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Abstract. The extraction of a physical law y = yo(x) from joint experimental data about x and y is
treated. The joint, the marginal and the conditional probability density functions (PDF) are expressed by
given data over an estimator whose kernel is the instrument scattering function. As an optimal estimator
of yo(x) the conditional average is proposed. The analysis of its properties is based upon a new definition
of prediction quality. The joint experimental information and the redundancy of joint measurements are
expressed by the relative entropy. With the number of experiments the redundancy on average increases,
while the experimental information converges to a certain limit value. The difference between this limit
value and the experimental information at a finite number of data represents the discrepancy between
the experimentally determined and the true properties of the phenomenon. The sum of the discrepancy
measure and the redundancy is utilized as a cost function. By its minimum a reasonable number of data
for the extraction of the law yo(x) is specified. The mutual information is defined by the marginal and
the conditional PDFs of the variables. The ratio between mutual information and marginal information
is used to indicate which variable is the independent one. The properties of the introduced statistics are
demonstrated on deterministically and randomly related variables.

PACS. 06.20.Dk Measurement and error theory – 02.50.-r Probability theory, stochastic processes, and
statistics – 89.70.+c Information theory and communication theory

1 Introduction

The progress of natural sciences depends on advancement
in the fields of experimental techniques and modeling of
relations between experimental data in terms of physical
laws [1,2]. By utilizing computers a revolution appeared
in the acquisition of experimental data while modeling
still awaits a corresponding progress. For this purpose the
modeling process should be generally described in terms
of operations that could be autonomously performed by a
computer. A step in this direction was taken recently by a
nonparametric statistical modeling of the probability dis-
tribution of measured data [3]. The nonparametric model-
ing requires no a priori assumptions about the probability
density function (PDF) of measured data and therefore
provides for a fairly general and autonomous experimen-
tal modeling of physical laws by a computer [1,4]. More-
over, the inaccuracy of measurement caused by stochastic
influences can be properly accounted for in the nonpara-
metric modeling that further leads to the expression of
experimental information, redundancy of repeated mea-
surements and model cost function in terms of entropy
of information. These variables have already been applied
when formulating an optimal nonparametric modeling of
PDF, in the most simple case of a one-dimensional vari-
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able [3]. However, more frequently than modeling of a
PDF the problem is to extract a physical law from joint
data about various variables and to analyze its properties.
Therefore, the aim of this article is to propose a general
statistical approach also to the solution of this problem.

As an optimal statistical estimator of an experimen-
tal physical law we propose the conditional average (CA)
that is determined by the conditional PDF [1]. This esti-
mator represents a nonparametric regression whose struc-
ture is case independent; hence it can be generally pro-
grammed and autonomously determined by a computer.
Due to these convenient properties, we consider CA as a
basis for the autonomous extraction of experimental phys-
ical laws in data acquisition systems.

The fundamental steps of the proposed approach to
extraction of experimental physical laws from given data
are explained in the second section. We first define the
estimators of the joint, the marginal and the conditional
PDFs and derive from them the conditional average as
an optimal estimator of a physical law that is hidden in
joint data. In order to estimate the number of data ap-
propriate for the extraction of a physical law, we further
introduce the statistics that characterize the information
provided by joint measurements. In the third section of
the article the properties of the CA estimator and the
other introduced statistics are demonstrated on cases of
deterministically and randomly related data.
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2 Statistics of joint measurements

2.1 Uncertainty of experimental observation

Without loss of generality we consider a phenomenon that
can be quantitatively characterized by two scalar valued
variables x and y comprising a vector z = (x, y). We fur-
ther assume that the phenomenon can be experimentally
explored by repetition of joint measurements on a two-
channel instrument having equal spans Sx = (−L,L),
Sy = (−L,L). Their Cartesian product Sxy = Sx ⊗ Sy

determines the joint span. We treat a measurement of a
joint datum as a process in which the measured object
generates the instrument output z = (x, y). The basic
properties of the instrument and measurement procedure
can be characterized by a calibration based on a set of
objects {wkl = (uk, vl); k = 1, . . . l = 1, . . .} that repre-
sent joint physical units. Using these units, a scale net can
be determined in the joint span Sxy of the instrument. In
order to simplify the notation, we further omit the indices
of units.

A common property of measurements is that the out-
put of the instrument fluctuates even when calibration
is repeated [1,2]. We describe this property by the joint
PDF ψ(z|w), which characterizes the scattering of the in-
strument output at a given joint unit w. For the sake
of simplicity, we consider an instrument whose channels
can be calibrated mutually independently. In this case the
instrument scattering function is expressed by the prod-
uct of scattering functions corresponding to both channels
ψ(z|w) = ψ(x|u)ψ(y|v). Their mean values u, v, and stan-
dard deviations σx, σy represent an element of the instru-
ment scale and the scattering of instrument output at the
joint calibration. These values can be estimated statisti-
cally by the sample mean and variance of both components
measured during repeated calibration by a joint unit w.
The standard deviation σ characterizes the uncertainty
of the measurement procedure performed on a unit [1,2].
We further consider the most frequent case in which the
output scattering does not depend on the channel index
and the position w = (u, v) on the joint scale. In this
case it can be expressed as a function of the difference
z − w = (x − u, y − v) and a common standard devia-
tion σ = σx = σy as ψ(z|w) = ψ(z − w, σ). We consider
scattering of instrument output during calibration as a
consequence of random disturbances in the measurement
system. When these disturbances are caused by contribu-
tions from mutually independent sources, the central limit
theorem of the probability theory leads us to the Gaussian
scattering function ψ(z−w, σ) = g(x−u, σ)g(y−v, σ), in
which the scattering of a single component is determined
by:

ψ(x|u) = g(x− u, σ) =
1√
2π σ

exp
[
− (x− u)2

2σ

]
. (1)

2.2 Estimation of probability density functions

Let us consider a single measurement which yields a joint
datum z1 = (x1, y1). We generally consider z as a random

vector variable and assume that this joint datum appears
at the outputs of instrument channels, since it is the most
probable at a given state z of the observed phenomenon
and the instrument during measurement. Therefore, we
utilize the measured datum z1 as the center of the proba-
bility distribution ψ(z− z1, σ) = ψ(x− x1, σ)ψ(y − y1, σ)
that represents the corresponding state.

Consider next a series of N repeated, equally prepared,
and mutually independent measurements which yield the
basic data set {zi; i = 1, . . . , N}. In accordance with the
above–given interpretation of measured data we adapt to
them the distributions {ψ(z − zi, σ); i = 1, . . . , N}. We
consider measured data as mutually independent, equally
weighted samples of the random variable z. Its joint PDF
is estimated by the statistical average over distributions
{ψ(z− zi, σ); i = 1, . . . , N} as:

fN(z) =
1
N

N∑
i=1

ψ(z − zi, σ). (2)

This function represents an experimental model of PDF
and resembles Parzen’s kernel estimator, which is often
used in statistical modeling of PDFs [4,5]. However, in
Parzen’s modeling the kernel width σ plays the role of
an optional smoothing parameter whose value should de-
crease with the number of data N , which is not con-
sistent with the general properties of measurements. In
opposition to this, we consider σ as an instrumental pa-
rameter that is determined by the inaccuracy of measure-
ment [3,4]. In the majority of experimental observations
σ is a constant during measurements, and hence need not
be further indicated in the scattering function ψ.

The estimator of PDF given in equation (2) depends
on data and function that are completely determined by
experimental procedures. Since we do not use any ad-
justable parameter the estimator equation (2) is nonpara-
metric and hence free of ambiguity that is introduced by
an a priori selected form of the estimator in a parametric
treatment. The estimated PDF is a basis for our descrip-
tion of the phenomenon under consideration, therefore our
approach can be interpreted as an objective statistical
one. This interpretation represents an essential advantage
with respect to other approaches that are based on various
parametric models [4,6,7]. For the same reason we do not
specify parametrically the model of the physical law that
governs the phenomenon but consider it as a statististic
that can be extracted from the estimated PDF by a less
ambiguous mathematical treatment. For this purpose we
first derive estimators of marginal and conditional PDFs.

The marginal PDF f(x) of a component x is obtained
from the joint PDF f(z) = f(x, y) by integration over the
other component, for example:

f(x) =
∫

Sy

f(x, y)dy. (3)

The conditional PDF of the variable y at a given condition
x is then defined by the ratio of the joint PDF and the
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marginal PDF of the condition:

f(y|x) =
f(x, y)
f(x)

. (4)

Using the experimental model of joint PDF (2) we obtain
for the marginal and conditional PDFs the following kernel
estimators:

fN (x) =
1
N

N∑
i=1

ψ(x− xi, σ) (5)

fN(y|x) =
∑N

i=1 ψ(x− xi, σ)ψ(y − yi, σ)∑N
j=1 ψ(x− xj , σ)

. (6)

2.3 Estimation of a physical law

It is often observed that the joint PDF resembles a crest
along some line y = ŷ(x). We consider ŷ(x) as an estimator
of a hidden physical law y = yo(x) that provides for a
prediction of a value y from the given value x. If we repeat
joint measurements, and consider only those that yield
the value x, we can generally observe that corresponding
values of the variable y are scattered, at least due to the
stochastic character of the measurements. As an optimal
predictor of the variable y at the given value x, we consider
the value ŷ that yields the minimum of the mean square
prediction error D at a given x:

D = E[(ŷ − y)2|x] = min(ŷ). (7)

The minimum takes place when dD/dŷ = 0. The solu-
tion of this equation yields as the optimal predictor ŷ the
conditional average

ŷ(x) = E[y|x] =
∫

Sy

y f(y|x)dy. (8)

By using equation (6) for the conditional probability, we
obtain for CA the superposition

ŷN (x) =
∑N

i=1 yiψ(x− xi, σ)∑N
j=1 ψ(x− xj , σ)

=
N∑

i=1

yiCi(x). (9)

The coefficients

Ci(x) =
ψ(x− xi, σ)∑N

j=1 ψ(x− xj , σ)
(10)

represent a normalized measure of similarity between the
given value x and sample values xi and satisfy the condi-
tions:

N∑
i=1

Ci(x) = 1 , (11)

0 ≤ Ci(x) ≤ 1. (12)

The more similar given value x is to a datum xi, the larger
the coefficient Ci(x) is and the contribution of the corre-
sponding term yiCi(x) to the sum in equation (9). The

prediction of the value ŷN (x), which best corresponds to
the given value x, thus resembles the associative recall of
memorized items in the brains of intelligent beings, and
therefore could be treated as a basis for the development of
computerized autonomous modelers of physical laws and
related machine intelligence [1].

Predictor ŷN(x) in equation (9) is completely deter-
mined by the set of measured data {z− zi; i = 1, . . . , N}
and the instrument scattering function ψ. The predictor
is not based on any a priori assumption about the func-
tional relation between the variables x and y, as is done for
example when a physical law is ambiguously described by
some regression function in which parameters are adapted
to given data [6,7]. Similarly as the estimator of PDF ex-
pressed by equation (2), also the conditional average equa-
tion (9) can be treated as a nonparametric regression of an
objective character. However, it still depends on param-
eters zi, σ, but these parameters, as well as the form of
the function ψ, are totally determined by measurements.
They represent a property of the observed phenomenon
and not an ambiguously assumed auxiliary of the model-
ing. Since the form of the CA predictor does not depend
on a specific phenomenon under consideration, it could
be considered as a generally applicable basis for statisti-
cal nonparametric modeling of physical laws in terms of
experimental data in an autonomous computer. It is con-
venient that equation (9) can be simply generalized to a
multi-dimensional case by substituting the condition and
the estimated variable by the corresponding vectors [1].
Moreover, it is convenient that the ordering into depen-
dent and independent variables is done automatically by
a specification of the condition.

In the field of artificial neural networks the kernel esti-
mator of PDF given by equation (2), could be interpreted
as a model of Gaussian-radial-basis-function neural net-
work [6,7]. Similarly, the conditional average estimator
equation (9), could be considered as a model of a nor-
malized radial–basis–function neural network. However, a
significant difference is in the meaning of the kernel width
σ: in our approach σ is given by the properties of the in-
strument utilized in the acquisition of experimental data,
while in the field of artificial neural networks it is consid-
ered as an optional smoothing parameter that is adapted
by the user of the model based upon some optimization
procedure. With respect to this difference our approach
appears more in tune with experimental exploration and
nonparametric statistical modeling of physical laws.

2.3.1 Description of predictor quality

We can interpret a phenomenon which is characterized by
the vector z = (x, y) as a process that maps the variable x
to the variable y. When the variables x and y are stochas-
tic, we most generally describe this mapping by the joint
PDF f(x, y). Similarly, we can interpret the prediction of
the variable ŷ(x) from the given value x as a process that
runs in parallel with the observed phenomenon. This pro-
cess is also generally characterized by the PDF f(x, ŷ),
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while the relation between the variables y and ŷ is char-
acterized by the PDF f(y, ŷ). The better the predictor is,
the more the distribution f(y, ŷ) is concentrated along the
line y = ŷ(x). For a good predictor we generally expect
that the prediction error Er = y − ŷ is close to 0. Since
both variables are considered as stochastic ones, we ex-
pect that the first and second moments of the prediction
error E[y − ŷ], E[(y − ŷ)2] are small, while for an exact
prediction E[y − ŷ] = 0, and E[(y − ŷ)2] = 0. The second
moment of the error is equal to E[(y − ŷ)2] = Var(y) +
Var(ŷ) − 2Cov(y, ŷ) + (my −mŷ)2, where my = E[y] and
mŷ = E[ŷ] denote mean values. If the variables y and ŷ are
statistically independent and have equal mean values, the
covariance vanishes: Cov(y, ŷ) = 0, and my −mŷ = 0, so
that E[(y− ŷ)2] = Var(y)+Var(ŷ). Based upon this prop-
erty we introduce a relative statistic called the predictor
quality with the formula

Q = 1 − E[(y − ŷ)2]
Var(y) + Var(ŷ)

=
2Cov(y, ŷ)

Var(y) + Var(ŷ)
− (my −mŷ)2

Var(y) + Var(ŷ)
. (13)

Its value equals 1 for an exact prediction: ŷ = y, while it
equals 0, if the variables y, ŷ are statistically independent
and have equal mean values. If the mean values differ:
my −mŷ �= 0, the quality Q can also be negative.

When the predictor is determined by the conditional
average (8), we obtain for its mean value

mŷ = E[ŷ] =
∫
ŷf(x)dx =

∫ ∫
yf(y|x)f(x)dxdy

=
∫ ∫

yf(y, x)dxdy = E[y] = my. (14)

Since in this case my −mŷ = 0, we further get

Q =
2Cov(y, ŷ)

Var(y) + Var(ŷ)
. (15)

Similarly we get for the covariance

Cov(y, ŷ) =
∫ ∫

(ŷ(x) −mŷ)(y −my)f(x, y)dxdy

=
∫ ∫

(ŷ(x) −mŷ)(y −my)f(y|x)dyf(x)dx

=
∫

(ŷ(x) −mŷ)2f(x)dx = Var(ŷ), (16)

so that the expected quality of the CA predictor is

Q =
2Var(ŷ)

Var(y) + Var(ŷ)
. (17)

In the case when the relation between both components of
the vector z is determined by some physical law yo(x), and
only the measurement procedure introduces an additive
noise ν with zero mean E[ν] = 0, and variance E[ν2] = σ2,
we can express the variable y as y = yo(x) + ν. In this

case the following equations: E[(y − ŷ)2] = σ2, Var(y) =
Var(ŷ) + σ2 hold, and we get for the expected predictor
quality the expression:

Q =
2Var(ŷ)

2Var(ŷ) + σ2
. (18)

For Var(ŷ) � σ2/2 we have Q ≈ 1, while for Var(ŷ) �
σ2/2 we have Q ≈ 0. In the last case ŷ ≈ constant, while
y fluctuates around this constant, and consequently the
prediction quality is low.

Since generally Var(y) ≥ Var(ŷ) and Var(ŷ) ≥ 0, we
obtain from equation (17) the inequality 0 ≤ Q ≤ 1. It
describes a mean property, which need not be fulfilled ex-
actly if the conditional average is statistically estimated
from a finite number of samples N ; but we can expect that
it holds ever more with an increasing N . However, we can
generally expect that with an increasing N , the statisti-
cally estimated CA ever better represents the underlying
physical law y = yo(x). However, with an increasing N ,
the cost of experiments increases, and consequently there
generally appears the question: “how to specify a num-
ber of samples N that is reasonable for the experimental
estimation of a hidden law yo(x)?”

2.4 Experimental information

In order to answer the last question, we proceed with the
description of the indeterminacy of the vector variable z
in terms of the entropy of information. Following the def-
initions given for a scalar random variable in the previous
article [3], we first describe the indeterminacy of the com-
ponent x. For this purpose we introduce a uniform refer-
ence PDF ρ(x) = 1/(2L) that hypothetically corresponds
to the most indeterminate noninformative observation of
variable x; or to equivalently prepared initial states of the
instrument before executing the experiments in a series
of observations. By using this reference and the marginal
PDF f(x), we first define the indeterminacy of a continu-
ous random variable by the negative value of the relative
entropy [8,9]

Hx = −
∫

Sx

f(x) log
(f(x)
ρ(x)

)
dx. (19)

Using the expressions for the reference, instrumental scat-
tering function, and experimentally estimated PDF, we
obtain the expressions for the uncertainty Hu of calibra-
tion performed on a unit u, the uncertainty Hx of the
component x, experimental information Ix provided by
N measurements of x, and the redundancy Rx of these
measurements as follows [3]:

Hu = −
∫

Sx

ψ(x, u) log(ψ(x, u)) dx − log(2L),

Hx = −
∫

Sx

fN(x) log(fN(x)) dx − log(2L),

Ix(N) = Hx −Hu,

Rx(N) = log(N) − Ix(N). (20)
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Similar equations are obtained for the component y by
substituting x→ y.

In order to describe the uncertainty of the random vec-
tor z, we utilize the reference PDF that is uniform inside
the joint span Sxy: ρ(z) = ρ(x)ρ(y) = 1/(2L)2, and van-
ishes elsewhere. By analogy with the scalar variable we
define the indeterminacy of the random vector z by the
negative value of the relative entropy [8]:

Hxy = −
∫ ∫

Sxy

f(z) log
(f(z)
ρ(z)

)
dxdy. (21)

In the case of a uniform reference PDF we obtain

Hxy = −
∫ ∫

Sxy

f(z) log(f(z)) dxdy − 2 log(2L). (22)

With this formula we then express the uncertainty of the
joint instrument calibration as

Hw = −
∫ ∫

Sxy

ψ(z,w) log(ψ(z,w)) dxdy − 2 log(2L).

(23)
For σ � L we obtain from the Gaussian scattering func-
tion ψ(z, zi) = g(x− xi, σ)g(y − yi, σ) the approximation

Hw ≈ log
(σ2

L2

)
+ log

π

2
+ 1. (24)

The uncertainty of calibration depends on the ratio be-
tween the scattering width 2σ and the instrument span 2L
in both directions. The number 2 log(σ/L) determines the
lowest possible uncertainty of measurement on the given
two-channel instrument, as achieved at its joint calibra-
tion.

The indeterminacy of the random vector z, which char-
acterizes the scattering of experimental data, is defined by
the estimated joint PDF as

Hxy = −
∫ ∫

Sxy

fN(z) log(fN(z)) dxdy − 2 log(2L) (25)

and is generally greater than the uncertainty of calibra-
tion described by Hw. Since Hw denotes the lowest possi-
ble indeterminacy of observation carried out over a given
instrument, we define the joint experimental information
Ixy about vector z = (x, y) by the difference

Ixy(N) = Hxy −Hw

= −
∫ ∫

fN (z) log(fN (z)) dxdy

+
∫ ∫

ψ(z,w) log(ψ(z,w)) dxdy. (26)

Most properties of the uncertainty and information apper-
taining to a random vector are similar to those in the case
of a scalar variable. For example, the reference density ρ(z)
can be arbitrarily selected since it is excluded from the
specification of the experimental information [3]. Further-
more, the joint experimental information Ixy(1) provided

by a single measurement is zero. For a measurement which
yields multiple samples z1, . . . , zN that are mutually sep-
arated by several σ in both directions, the distributions
ψ(z, z1) = g(x−xi, σ)g(y−yi, σ) are non-overlapping and
the first integral on the right of equation 26 can be ap-
proximated as

− 1
N

N∑
i=1

∫ ∫
ψ(z, zi) log

[ 1
N

N∑
i=1

ψ(z, zi)
]
dxdy ≈

log(N) −
∫ ∫

ψ(z, z1) logψ(z, z1) dxdy (27)

so that we get Ixy(N) ≈ log(N). If the distributions
ψ(z, zi) are overlapping but not concentrated at a single
point, the inequality 0 ≤ Ixy(N) ≤ log(N) holds gener-
ally. Similarly as the entropy of information for a discrete
random variable, the experimental information describes
how much information is provided by N experiments per-
formed by an instrument that is not infinitely accurate [8].
In accordance with these properties the experimental in-
formation describes the complexity of experimental data
in units of information entropy, which are here nats.

When the distributions ψ(z, zi) are non-overlapping,
N repeated experiments yield the maximal possible in-
formation log(N). However, with an increasing number
N , ever more overlapping of distributions ψ(z, zi) takes
place, and therefore the experimental information Ixy(N)
increases more slowly than log(N). Consequently, the rep-
etition of joint measurements becomes on average ever
more redundant with an increasing number N . The dif-
ference

Rxy(N) = log(N) − Ixy(N) . (28)

thus represents the redundancy of repeated joint measure-
ments in N experiments. Since the overlapping of distri-
butions ψ(z, zi) increases with an increasing number of ex-
periments, the experimental information on average tends
to a constant value Ixy(∞), and along with this, the re-
dundancy increases with N .

The number

Kxy(N) = eIxy(N) (29)

describes how many non-overlapping distributions we need
to represent the experimental observation. With an in-
creasing N , the number Kxy(N) tends to a fixed value
Kxy(∞) that can be well estimated already from a finite
number of experiments. We could conjecture thatKxy(∞)
approximately determines a reasonable number of experi-
ments that provide sufficient data for an acceptable mod-
eling of the joint PDF. However, it is still better to de-
termine such a number from a properly introduced cost
function of the experimental observation. With this aim
we consider the difference Dxy(N) = Ixy(∞) − Ixy(N) as
the measure of the discrepancy between the experimen-
tally observed and the true properties of the phenomenon.
An information cost function is then comprised of the re-
dundancy and the discrepancy measure:

Cxy(N) = Rxy(N) +Dxy(N). (30)
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Since the redundancy on average increases, while the dis-
crepancy measure decreases with the number of measure-
ments N , we expect that the cost function Cxy(N) ex-
hibits a minimum at a certain number No, which could be
considered as an optimal one for the experimental model-
ing of a phenomenon. From the definition of redundancy
and the discrepancy measure we further obtain Cxy(N) =
Rxy(N)+Dxy(N) = log(N)−2Ixy(N)+Ixy(∞). Since the
last term is a constant for a given phenomenon, it is not
essential for the determination of No, and can be omitted
from the definition of the cost function. This yields a more
simple version

Cxy(N) = log(N) − 2Ixy(N), (31)

which is more convenient for application since it does not
include the limit value Ixy(∞). In a previous article [3]
we have proposed a cost function that is comprised from
the redundancy and the information measure of the dis-
crepancy between the hypothetical and experimentally ob-
served PDFs. However, such a definition is less convenient
than the present one, although the values of No deter-
mined from both cost functions do not differ essentially.
Numerical investigations also show that the optimal num-
ber No approximately corresponds to Kxy(∞) = eIxy(∞)

if the distribution of the data points is approximately uni-
form.

Although the experimental information of a vector
variable and its scalar components exhibits similar proper-
ties, their values generally do not coincide since the over-
lapping of distributions ψ(z, zi) generally differs from that
of distributions ψ(x, xi) or ψ(y, yi). Therefore, the exper-
imental information provided by joint measurements gen-
erally differs from that provided by measurements of single
components.

2.5 Mutual information and determination
of one variable by the other

In order to describe the information corresponding to the
relation between variables x, y we introduce conditional
entropy. At a given value x we express the entropy per-
taining to the variable y by the conditional PDF as

Hy|x = −
∫

Sy

f(y|x) log
(f(y|x)
ρ(y)

)
dy. (32)

If we express in equation (21) the joint PDF by the con-
ditional one f(z) = f(y|x)f(x) we obtain the following
equation:

Hxy = Hy|x +Hx (33)

in which Hy|x denotes the average conditional entropy of
information

Hy|x = −
∫

Sx

Hy|xf(x) dx. (34)

When we exchange the meaning of the variables we get

Hxy = Hx|y +Hy. (35)

Based on these equations and equation (26) we obtain the
following relation between the joint and the conditional
information

Ixy = Hx|y +Hy −Hu −Hv

= Iy|x + Ix = Ix|y + Iy (36)

where the conditional information is defined by

Ix|y = Hx|y −Hu or Iy|x = Hy|x −Hv. (37)

When the components of the vector z are statistically
independent, the joint PDF is equal to the product of
marginal probabilities and the joint information is given
by the sum Ixy = Ix + Iy , which represents the maxi-
mal possible information that could be provided by joint
measurements. However, when x and y are not statisti-
cally independent, the joint information is less than the
maximal possible one: Ixy < Ix + Iy. The difference

Im = Ix + Iy − Ixy = Ix − Ix|y = Iy − Iy|x. (38)

can be interpreted as the experimental information that
a measurement of one variable provides about another
one and is consequently called the mutual informa-
tion [8,10–12]. In accordance with the previous interpreta-
tion of the redundancy, it follows from the last two terms
in equation (38) that the mutual information also de-
scribes how redundant on average is a measurement of the
variable y at a given x or vice versa. In accordance with
the definition of the redundancy of a certain number N
of measurements Rx(N) = log(N) − Ix, we further define
also the mutual redundancy of N joint measurements

Rm(N) = log(N) − Im(N) . (39)

If we then take into account all the definitions of the re-
dundancies and types of information, we obtain the for-
mula:

Rxy(N) = Rx(N) +Ry(N) −Rm(N). (40)

It should be pointed out that redundancies Rxy(N),
Rx(N), Ry(N), and Rm(N) generally increase with N ,
while the corresponding experimental information tends
to a fixed value that corresponds to the amount of data
needed for presenting related variables.

In order to describe quantitatively how well deter-
mined the value of the variable y by the value of x is on
average, we propose a relative measure of determination
by the ratio

Dy|x =
Im
Iy

= 1 − Iy|x
Iy

. (41)

If Dy|x > Dx|y, the value of the variable x better deter-
mines the value of y than vice versa. In this case the vari-
able x could be considered as more fundamental for the
description of the phenomenon, and consequently as an
independent one. In the case of functional dependence de-
scribed by a physical law y = yo(x), the relative measure
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Fig. 1. The joint PDF f(x, y) utilized to demonstrate the
properties of the conditional average predictor.

of determination is Dy|x = 1, while for the statistically
independent variables x and y it is Dy|x = 0.

The entropy of information is generally decreased if
the distribution of scattered experimental data at a given
x is compressed to the estimated physical law ŷ(x). The
corresponding information gain is in drastic contrast to
the information loss that is caused by the noise in a mea-
surement system [13].

3 Illustration of statistics

3.1 Data with a hidden law

The purpose of this section is to demonstrate graphically
the basic properties of the statistics introduced above.
For this purpose it is most convenient to generate data
numerically since in this case the relation between the
variables x and y, as well as the properties of the scatter-
ing function ψ(z), can be simply set. For our demonstra-
tion we arbitrarily selected a third order polynomial law
yo(x) = [x(x − 5)(x + 10)]/100 and the Gaussian scatter-
ing function with standard deviation σ = 0.2. To simulate
the basic data set {xi, yi; i = 1, . . . , N}, we first calcu-
lated 50 sample values xi by summing two random terms
obtained from a generator with a uniform distribution in
the interval [−8,+8] and from a Gaussian generator hav-
ing the mean value 0 and standard deviation σ = 0.2.
The corresponding sample values yi were then calculated
as a sum of terms obtained from the selected law yo(xi)
and the same random Gaussian generator with a different
seed. The generated data {xi, yi; i = 1, . . . , 50} were used
as centers of scattering function when estimating the joint
PDF based on equation (2). An example of such PDF is
shown in Figure 1, while the corresponding joint data of
the basic set are shown by points in the top curve of Fig-
ure 2 together with the underlying law yo(x).

The conditional average predictor, which corresponds
to the presented example, was modeled by inserting data
from the basic data set into equation (9). To demonstrate
its performance, we additionally generated a test data set
by the same procedure as in the case of the basic data set,

−10 −8 −6 −4 −2 0 2 4 6 8 10
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TESTING OF CA PREDICTOR

σ = 0.2   N=50  Q = 0.977
Yo
Y 
Yt
Yp
Er

Fig. 2. Testing of CA predictor. Curves representing the un-
derlying law and given data yo, y – (top), test and predicted
data yt, yp – (middle), and prediction error Er = yp − yt –
(bottom) are displaced in vertical direction for a better visu-
alization.

but with different seeds of all the random generators. Us-
ing the values xi,t of the test set, we then predicted the cor-
responding values ŷi by the modeled CA predictor. With
this procedure we simulated a situation that is normally
met when a natural law is modeled and tested based upon
experimental data. The test and predicted data are shown
by the middle two curves in Figure 2. From both data sets
the prediction error Er = ŷ−yt was calculated that is pre-
sented by the bottom curve (..*..) in Figure 2. The curve
representing the predicted data (–o–) is smoother than the
curve representing the original test data (..·..). This prop-
erty is a consequence of smoothing caused by estimating
the conditional mean value from various data included in
the modeled CA predictor. In spite of this smoothing, it is
obvious that the characteristic properties of the relation
between the variables x and y is approximately extracted
from the given data by the CA predictor. This further
means that the properties of the hidden law y = yo(x) can
be approximately described in the region where measured
data appear based on a finite number of joint samples.

The quality of estimation of the hidden law yo(x) de-
pends on the values and number N of statistical samples
utilized in equation (9) in the modeling of CA and its test-
ing. To demonstrate this property, we repeated the com-
plete procedure three times, using various statistical data
sets with increasing N and determined the dependence of
predictor quality Q on N . The result is presented in Fig-
ure 3. The quality statistically fluctuates with the increas-
ing N , but the fluctuations are ever less pronounced, so
that quality determined from different data sets converges
to a common limit value at a large N . In our example
with σ = 0.2 the limit value is approximately Q = 0.98.
With increasing N , the curves corresponding to different
data sets join approximately at NCA ≈ 30. At a higher
N the fluctuations of Q are ever less expressive. We could
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Fig. 4. Dependence of log(N), experimental information Ixy,
mutual information Im, redundancy Rxy, and cost function
Cxy on the number of samples N determined by various sta-
tistical data sets.

conjecture that about 30 data values are needed to model
the CA predictor in the presented case approximately.

The smaller the scattering width σ is, the higher gen-
erally the limit value of the predictor quality is, but on
average Q is still less than 1 if 1/σ and N are finite. This
property is in tune with the well–known fact that it is
impossible to determine exactly the law y = yo(x) from
joint data that are measured by an instrument which is
subject to output scattering due to inherent stochastic
disturbances.

The properties of the statistics that are formulated
based upon the entropy of information are demonstrated
for the case with σ = 0.2 in Figure 4. It shows the
dependence of experimental information Ixy, mutual in-
formation Im, redundancy Rxy, and cost function Cxy

on the number of samples N for three different sample
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Fig. 5. Dependence of log(N), experimental information Ixy,
marginal informations Ix, Iy, and mutual information Im on
the number of samples N .

sets. In the same figure the maximal possible informa-
tion, which corresponds to the ideal case with no scatter-
ing, is also presented by the curve log(N), since it rep-
resents the basis for defining the redundancy. Similarly
as in the one-dimensional case [3], the experimental in-
formation Ixy in the two-dimensional case also converges
with increasing N to a fixed value. In the presented case
the limit value is Ixy(∞) ≈ 3.2, which yields the num-
ber K∞ ≈ 25. This number is approximately equal to
the ratio of standard deviation of variable x and the scat-
tering width σ and describes how many uniformly dis-
tributed samples are needed to represent the PDF of the
data [3]. Due to the convergence of experimental infor-
mation to a fixed value, the curve Ixy(N) starts to de-
viate from log(N) with the increasing N . Consequently
the redundancy Rxy = log(N)−Ixy(N) starts to increase,
which further leads to the minimum of the cost function
Cxy(N) = log(N) − 2Ixy(N). The minimum is not well
pronounced due to statistical variations, but it takes place
at approximately No ≈ 30. Not surprisingly, the optimal
number No approximately corresponds to K∞ and also to
NCA.

Similarly as the joint experimental information Ixy, the
marginal experimental information Ix, Iy also converges
to fixed values with increasing N [3]. These statistics are
presented in Figure 5 for the same data generator as ap-
plied in the case of Figure 4. The sample values of vari-
able x take place in a larger interval than those of variable
y. Hence there is less overlapping of scattering functions
comprising the marginal PDF of x and consequently Ix is
larger than Iy. It is also characteristic that Ixy is larger
than Ix since the data points in the joint span Sxy are
more separated than in the marginal span Sx. Since the
mutual information Im is defined as Im = Ix + Iy − Ixy,
its properties depend on both the marginal and the joint
information, and consequently Im converges more quickly
to the limit value than the experimental information Ixy .
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Fig. 6. Dependence of log(N), experimental information Ixy,
redundancy Rxy, and cost function Cxy on the number of
samples N determined from various data sets and scattering
widths σ.

To demonstrate the influence of scattering width on
the presented statistics the calculations were repeated
with σ = 0.1 and 0.4. The results are presented in Fig-
ure 6. For the sake of clear presentation, the curves repre-
senting the mutual information Im are omitted. As could
be expected, the limit value of Ixy increases with decreas-
ing σ. This property is consistent with the well-known fact
that more information can be obtained by experimental
observation when using an instrument of higher accuracy
that corresponds to a lesser scattering width. In opposi-
tion to this, the redundancy of measurement decreases,
and along with it, the optimal number No increases with
the decreasing scattering width.

From the calculated mutual and marginal information,
the relative measures of determinationDy|x andDx|y were
further determined using various statistical data sets. The
results are presented in Figure 7 for the case of scattering
width σ = 0.2. When the number of data N surpasses the
interval around the optimal number No, statistical varia-
tions of Dy|x and Dx|y become less pronounced and their
values settle close to limit ones. The limit value Dx|y is
essentially lower than Dy|x. This is the consequence of the
fact that in our case the variable y is uniquely determined
by the underlying law yo(x) based upon the variable x, but
not vice versa. In our case, there are three values of the
variable x corresponding to a value of y in a certain inter-
val. Consequently, y is better determined by a given x than
vice versa, which further yields Dy|x > Dx|y. Hence the
relative measure of determination indicates that variable x
could be considered more fundamental for the description
of the relation between the variables x and y.

3.2 Data without a hidden law

To support the last conclusion let us examine an exam-
ple in which the sample values of the variables x and
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Fig. 7. Dependence of relative measure of determination Dy|x
– (top lines) and Dx|y – (bottom lines) on the number of sam-
ples N determined from various statistical data sets.
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Fig. 8. The joint PDF f(x, y) of N = 500 statistically inde-
pendent random data with σ = 0.2.

y were calculated by two statistically independent ran-
dom generators. The corresponding joint PDF is shown in
Figure 8, while the properties of the other statistics are
demonstrated by Figures 9, 10 and 11.

The properties of the presented statistics could be un-
derstood, if the overlapping of scattering functions com-
prising the estimator of the joint PDF is examined. In
the previous case with the underlying law yo(x), the joint
data are distributed along the corresponding line where
−8 ≤ x ≤ +8, while in the last case, they take place in the
square region −8 ≤ x ≤ +8,−8 ≤ y ≤ +8. Consequently,
the number of samples with non-overlapping scattering
functions in the last case is approximately L/σ = 16 times
larger than in the previous case. In the last case we can
therefore expect the optimal number of samples in the in-
terval around Nro ≈ 16No = 480. Since in the last case
a larger region is covered by the joint PDF, the overlap-
ping of scattering functions is less probable than previ-
ously, and therefore, the joint experimental information
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Fig. 9. Dependence of log(N), experimental information Ixy,
redundancy Rxy, and cost function Cxy on the number of sam-
ples N in the case of statistically independent random variables
x, y.
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Fig. 10. Dependence of log(N), experimental information Ixy,
marginal informations Ix, Iy, and mutual information Im on
the number of samples N in the case of statistically indepen-
dent random variables x, y.

Ixy deviates less quickly from the line log(N) with the
increasing N . Therefore, the redundancy increases less
quickly and the minimum of the cost function takes place
at a much higher number of Nro = 480, which corre-
sponds well to our estimation. Since in the last case the
experimental information Ixy converges less quickly to the
limit value than the marginal information Ix, Iy, the mu-
tual information Im first increases and later decreases to
its limit value. Related to this is the approach of rela-
tive measures of determination Dy|x, Dx|y to much lower
limit values as in the previous case. Since the marginal
information Ix, Iy is approximately equal, the curves rep-
resenting Dy|x, Dx|y join with increasing N , and there is
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Fig. 11. Dependence of relative measure of determination Dy|x
– (top line) and Dx|y – (bottom line) on the number of random
samples N in the case of statistically independent random data
with σ = 0.2.

no argument to consider any variable as a more funda-
mental one for the description of the phenomenon under
examination. This conclusion is consistent with the fact
that the centers of the scattering functions are determined
by two statistically independent random generators. How-
ever, the limit values of the statistics Dy|x, Dx|y are not
equal to zero since the region −8 ≤ x ≤ +8,−8 ≤ y ≤ +8
where the data appear is limited, while the characteristic
region −σ ≤ x ≤ +σ,−σ ≤ y ≤ +σ covered by the joint
scattering function does not vanish.

4 Conclusions

Following the procedures proposed in the previous article
[3], we have shown how the joint PDF of a vector variable
z = (x, y) can be estimated nonparametrically based upon
measured data. For this purpose the inaccuracy of joint
measurements was considered by including the scattering
function in the estimator. It is essential that the properties
of the scattering function need not be a priori specified,
but could be determined experimentally based upon cali-
bration procedure. The joint PDF was then transformed
into the conditional PDF that provides for an extraction
of the law yo(x) that relates the measured variables x, y.
For this purpose the estimation by the conditional average
yo(x) ≈ E[y|x] is proposed. The quality of the prediction
by the conditional average is described in terms of the es-
timation error and the variance of the measured data. It
is outstanding that the quality exhibits a convergence to
some limit value that represents the measure of applicabil-
ity of the proposed approach. Examination of the quality
convergence makes it feasible to estimate an appropriate
number of joint data needed for the modeling of the law.
It is important that the conditional average makes feasi-
ble a nonparametric autonomous extraction of underlying
law from the measured data.
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Using the joint PDF estimator we have also defined
the experimental information, the redundancy of mea-
surement and the cost function of experimental explo-
ration. It is characteristic that experimental information
converges with an increasing number of joint samples to a
certain limit value which characterizes the number of non-
overlapping scattering distributions in the estimator of
the joint PDF. The most essential terms of the cost func-
tion are the experimental information and the redundancy.
During cost minimization the experimental information
provides for a proper adaptation of the joint PDF model
to the experimental data, while the redundancy prevents
an excessive growth of the number of experiments. By
the position of the cost function minimum we introduced
the optimal number of the data that is needed to rep-
resent the phenomenon under exploration. This number
roughly corresponds to the ratio between the magnitude
of the characteristic region where joint data appear and
the magnitude of the characteristic region covered by the
joint scattering function. It also corresponds to the appro-
priate number estimated from the quality of prediction by
the conditional average. Based upon the experimental in-
formation corresponding to the joint and marginal PDFs,
the mutual information has been introduced and further
utilized in the definition of the relative measure of determi-
nation of one variable by another. This statistic provides
an argument for considering one variable as a fundamental
one for the description of the phenomenon.

Our method is based upon an experimentally deter-
mined scattering function ψ and a measured set of data
{zi; i = 1, . . . , N}. However, in the literature there are
presented many examples of bare experimental data with
no supplementary information about the scattering func-
tion ψ and its width σ. In such a case our method cannot
be directly applied, since the scattering function can be
determined only by a calibration procedure. However, an
assumption about the form of scattering function ψ and
its width σ can still lead to the application of our method,
but in this case it becomes less objective and comparable

to other parametric methods [6,7]. Such an assumption
also provides for an additional analytical treatment of the
properties of PDF estimator. By following the Parzen’s
approach for the case when N → ∞, we then get to the
conclusion that the estimator in equation (2) is a consis-
tent estimator of the hypothetical PDF that is filtered by
the kernel function ψ [5,4].

The research was supported by the Ministry of Science and
Technology of Slovenia and EU COST.
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